Ap Keview

(1)
$$g'(x) = f(x)$$
 $g(x) = S$, $f(t)dt$

(2) $g(4) = S$, $f(t)dt = 2.5$ (3) $g'(1) = 4$

(2) $g(-2) = S^2 f(t)dt = -6$

(3) Consider endpoints $g(-2) = -6$... Abs. min value of $g(-2) = -6$ of $g = -6$ bl. and critical point $g(-2) = -6$ is smallest value of candidate:

(1) PDI only @ $x = 1$ blc $g'' \Delta s$ signs @ $x = 1$.

(1) $Sx f(x) dx = Sx f(x) - Sx f(x) dx$
 $u = f(x) dx = Sx dx$
 $dx = f(x) dx = Sx dx$

(4) $dx = f(x) dx = Sx dx$

(5) $dx = f(x) dx = Sx dx$

(6) $dx = f(x) dx = Sx dx$

(7) $dx = f(x) dx = Sx dx$

(8) $dx = f(x) dx = Sx dx$

(9) $dx = f(x) dx = Sx dx$

(10) $dx = f(x) dx = Sx dx$

(11) $dx = f(x) dx = Sx dx$

(12) $dx = f(x) dx = Sx dx$

(13) $dx = f(x) dx = Sx dx$

(14) $dx = f(x) dx = Sx dx$

(15) $dx = f(x) dx = Sx dx$

(16) $dx = f(x) dx = Sx dx$

(17) $dx = f(x) dx = Sx dx$

(18) $dx = f(x) dx = Sx dx$

(19) $dx = f(x) dx$

(20) $dx = f(x) dx$

(30) $dx = f(x) dx$

(41) $dx = f(x) dx$

(51) $dx = f(x) dx$

(62) $dx = f(x) dx$

(73) $dx = f(x) dx$

(84) $dx = f(x) dx$

(95) $dx = f(x) dx$

(97) $dx = f(x) dx$

(98) $dx = f(x) dx$

(19) $dx = f(x) dx$

(19) dx

(a) when when
$$x = 0$$

(b) $f(x) = x \ln x$

(c) $f(x) = x \ln x$

(d) $f(x) = x \ln x$

(e) $f(x) = x \ln x$

(f) $f(x) = x \ln x$

(f) $f(x) = x \ln x$

(g) $f(x) = x \ln x$

(g

Work the following on notebook paper, showing all work. No calculator.

1. The graph of the function f, consisting of three line segments, is shown. Let $g(x) = \int_{0}^{x} f(t) dt$.

- (a) Compute g(4) and g(-2).
- (b) Find the instantaneous rate of change of g, with respect to x, at x = 1.
- (c) Find the absolute minimum value of g on the closed interval [-2, 4]. Justify your answer.
- (d) The second derivative of g is not defined at x = 1 and x = 2. How many of these values are x-coordinates of points of inflection of the graph of g? Justify your answer.

2.

Which of the following represents the area of the shaded region in the figure above?

(A)
$$\int_{0}^{d} f(y) dy$$

(B)
$$\int_a^b (d-f(x)) dx$$

(D)
$$(b-a)+f(b)-f(a)$$

3. If $x^3 + 3xy + 2y^3 = 17$, then in terms of x and y, $\frac{dy}{dx} = 3x^2 + 3x + 3y + 6y + 6y + 6y = 0$

$$\widehat{(A)} \frac{x^2 + y}{x + 2y^2}$$

(B)
$$-\frac{x^2+y}{x+y^2}$$

(C)
$$-\frac{x^2+y}{x+2y}$$

(D)
$$-\frac{x^2+y}{2y^2}$$

(A)
$$\frac{x^2 + y}{x + 2y^2}$$
 (B) $-\frac{x^2 + y}{x + y^2}$ (C) $-\frac{x^2 + y}{x + 2y}$ (D) $-\frac{x^2 + y}{2y^2}$ (E) $\frac{-x^2}{1 + 2y^2}$ $\frac{dy}{dx} \left(3x + (y^2) \right) = 3x$

 $u=x^3+14$. $\int \frac{3x^2}{\sqrt{x^2+1}} dx = \int \frac{du}{\sqrt{u}} = \int \frac{du}$

$$d\chi = \frac{du}{3x^{2}}(A) 2\sqrt{x^{3}+1} + C \quad (B) \frac{3}{2}\sqrt{x^{3}+1} + C \quad (C) \sqrt{x^{3}+1} + C \quad (D) \ln \sqrt{x^{3}+1} + C \quad (E) \ln (x^{3}+1) + C$$

(B)
$$\frac{3}{2}\sqrt{x^3+1}+C$$

(C)
$$\sqrt{x^3+1}+6$$

(D)
$$\ln \sqrt{x^3 + 1} + C$$

(E)
$$\ln\left(x^3+1\right)+C$$

5. For what value of x does the function $f(x) = (x-2)(x-3)^2$ have a relative maximum?

$$(A) = 3$$

(B)
$$-\frac{7}{3}$$

(C)
$$-\frac{5}{2}$$

$$\left(0\right)^{\frac{7}{3}}$$

(E)
$$\frac{5}{2}$$

(A) -3 (B)
$$-\frac{7}{3}$$
 (C) $-\frac{5}{2}$ (D) $\frac{7}{3}$ (E) $\frac{5}{2}$ $\int_{1}^{1} + 0$ or DNE

$$f(x) = (x-2)2(x-3)+(x-3)^2 = 0$$

As from + to -

