CALCULUS
EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS
$\frac{d}{d x} \int_{1}^{x} t^{2} d t=$
$\frac{d}{d x} \int_{\pi / 6}^{x} \cos t d t=$

Second Fundamental Theorem of Calculus:

$$
\frac{d}{d x} \int_{a}^{x} f t d t=
$$

$\frac{d}{d x} \int_{x}^{4} t^{2} d t=$

$$
\frac{d}{d x} \int_{x}^{a} f t d t=
$$

$\frac{d}{d x} \int_{\pi / 6}^{x^{2}} \cos t d t=$
Second Fundamental Theorem of Calculus (Chain Rule Version):

$$
\frac{d}{d x} \int_{a}^{g x} f t d t=
$$

Ex. Use the Second Fundamental Theorem to evaluate:
(a) $\frac{d}{d x} \int_{3}^{x} \sqrt{1+t^{2}} d t=$
(b) $\frac{d}{d x} \int_{2}^{x} \tan t^{3} d t=$
(c) $\frac{d}{d x} \int_{-1}^{x^{3}} \frac{1}{1+t} d t=$
(d) $\frac{d}{d x} \int_{2}^{\sin x} \sqrt[3]{1+t^{2}} d t=$

Ex. The graph of a function f consists of a quarter circle and line segments. Let g be the function given by

$$
g \quad x=\int_{0}^{x} f t d t
$$

(a) Find $g 0, g-1, g 2, g 5$.

Graph of f
(b) Find all values of x on the open interval $-1,5$ at which g has a relative maximum. Justify your answer.
(c) Find the absolute minimum value of g on $-1,5$ and the value of x at which it occurs. Justify your answer.
(d) Find the x-coordinate of each point of inflection of the graph of g on $-1,5$. Justify your answer.

1. Find the derivatives of the functions defined by the following integrals:
(a) $\int_{0}^{x} \frac{\sin t}{t} d t$
(b) $\int_{0}^{x} e^{-t^{2}} d t$
(c) $\int_{1}^{\cos x} \frac{1}{t} d t$
(d) $\int_{0}^{1} e^{\tan ^{2} t} d t$
(e) $\int_{x}^{x^{2}} \frac{1}{2 t} d t, x>0$
(f) $\int_{x}^{2} \cos t^{2} d t$
(g) $\int_{1}^{\sqrt{x}} \frac{s^{2}}{s^{2}+1} d s$
(h) $\int_{-5}^{\cos x} t \cos t^{3} d t$
(i) $\int_{\tan x}^{17} \sin t^{4} d t$
2. The graph of a function f consists of a semicircle and two line segments as shown. Let g be the function given by $g \quad x=\int_{0}^{x} f t d t$.
(a) Find $g 0, g 3, g-2$, and $g 5$.

(b) Find all values of x on the open interval $-2,5$ at which g has a relative maximum.
Justify your answers.
(c) Find the absolute minimum value of g on the closed interval $[-2,5]$ and the value of x at which it occurs. Justify your answer.
(d) Write an equation for the line tangent to the graph of g at $x=3$.
(e) Find the x-coordinate of each point of inflection of the graph of g on the open interval -2,5 . Justify your answer.
(f) Find the range of g.
3. Let $g x=\int_{0}^{x} f t d t$, where f is the function whose graph is shown.
(a) Evaluate $g 0, g 1, g 2$, and $g 6$.
(b) On what intervals is g increasing?

(c) Where does g have a maximum value? What is the maximum value?
(d) Where does g have a minimum value? What is the minimum value?
(e) Sketch a rough graph of g on $[0,7]$.
4. Let $g x=\int_{-3}^{x} f t d t$, where f is the function whose graph is shown.
(a) Evaluate $g-3$ and $g 3$.
(b) At what values of x is g increasing? Justify.

(c) At what values of x does g have a maximum value? Justify.
(d) At what values of x does g have a minimum value? Justify.
(e) At what values of x does g have an inflection point? Justify.
5. Use the function f in the figure and the function g defined by $g(x)=\int_{0}^{x} f(t) d t$.
(a) Complete the table.

x	0	1	2	3	4	5	6	7	8	9	10
$g(x)$											

(b) Plot the points from the table in part (a).
(c) Where does g have its minimum?
(d) Which four consecutive points are collinear?
(e) Between which two consecutive points does g increase at the greatest rate?

5. If $F(x)=\int_{0}^{x} f(t) d t$
a. Identify all critical numbers of $\mathrm{F}(\mathrm{x})$.
b. On what interval(s) is $F(x)$ decreasing?
c. On what interval(s) is $F(x)$ concave up?

CALCULUS
 WORKSHEET 2 ON FUNCTIONS DEFINED BY INTEGRALS

1. Find the equation of the tangent line to the curve $y=F \quad x \quad$ where $F \quad x=\int_{1}^{x} \sqrt[3]{t^{2}+7} d t$ at the point on the curve where $x=1$.
2. Suppose that $5 x^{3}+40=\int_{c}^{x} f t d t$.
(a) What is $f x$?
(b) Find the value of c.
3. If $F x=\int_{-4}^{x} t-1^{2} t+3 d t$, for what values of x is F decreasing? Justify your answer.
4. Let $H \quad x=\int_{0}^{x} f t d t$ where f is the continuous function with domain $[0,12]$ shown on the right.
(a) Find $H 0$.
(b) On what interval(s) of x is H increasing? Justify your answer.

(c) On what interval(s) of x is H concave up?

Justify your answer.
(d) Is H 12 positive or negative? Explain.
(e) For what value of x does H achieve its maximum value? Explain.
5. The graph of a function f consists of a semicircle and two line segments as shown on the right.
Let $g x=\int_{1}^{x} f t d t$.
(a) Find $g 1, g 3, g-1$.
(b) On what interval(s) of x is g decreasing? Justify
 your answer.
(c) Find all values of x on the open interval $-3,4$ at which g has a relative minimum. Justify your answer.
(d) Find the absolute maximum value of g on the interval $-3,4$ and the value of x at which it occurs. Justify your answer.
(e) On what interval(s) of x is g concave up? Justify your answer.
(f) For what value(s) of x does the graph of g have an inflection point? Justify your answer.
(g) Write an equation for the line tangent to the graph of g at $x=-1$.
6. The graph of the function f, consisting of three line segments, is shown on the right.
Let $g x=\int_{1}^{x} f t d t$.
(a) Find $g 2, g 4, g-2$.
(b) Find $g^{\prime} 0$ and $g^{\prime} 3$.

Graph of f

(c) Find the instantaneous rate of change of g with respect to x at $x=2$.
(d) Find the absolute maximum value of g on the interval $-2,4$. Justify your answer.
(e) The second derivative of g is not defined at $x=1$ and at $x=2$. Which of these values are x-coordinates of points of inflection of the graph of g ? Justify your answer.

CALCULUS

WORKSHEET 3 ON FUNCTIONS DEFINED BY INTEGRALS

Work the following on notebook paper.

1. The function g is defined on the interval $[0,6]$ by $g x=\int_{0}^{x} f t d t$ where f is the function graphed in the figure.
(a) For what values of $x, 0<x<6$, does g have a relative maximum? Justify your answer.
(b) For what values of x is the graph of g concave down? Justify your answer.

(c) Write an equation for the tangent line to g at the point where $x=3$.
(d) Sketch a graph of the function g. List the coordinates of all critical point and inflection points.
2. Suppose that f^{\prime} is a continuous function, that $f 1=13$, and that $f 10=7$. Find the average value of f^{\prime} over the interval $[1,10]$.
3. The graph of a differentiable function f on the closed interval $[-4,4]$ is shown.

Let $G x=\int_{-4}^{x} f t d t$ for $-4 \leq x \leq 4$.
(a) Find $G-4$.
(b) Find $G^{\prime}-4$.
(c) On which interval or intervals is the graph of G decreasing? Justify your answer.
(d) On which interval or intervals is the graph of G concave down? Justify your answer.

(e) For what values of x does G have an inflection point? Justify your answer.
4. The function F is defined for all x by $F x=\int_{0}^{x^{2}} \sqrt{t^{2}+8} d t$.
(a) Find $F^{\prime} x$.
(b) Find $F^{\prime} 1$.
(c) Find $F^{\prime \prime} x$.
(d) Find $F^{\prime \prime} 1$.
5. If $F x=\int_{x}^{-5} t^{2}-t-6 d t$, on what intervals is F decreasing?
6. The graph of the velocity $v t$, in $\mathrm{ft} / \mathrm{sec}$, of a car traveling on a straight road, for $0 \leq t \leq 35$, is shown in the figure.
(a) Find the average acceleration of the car, in $\mathrm{ft} / \mathrm{sec}^{2}$, over the interval $0 \leq t \leq 35$.
(b) Find an approximation for the acceleration of the car, in
 $\mathrm{ft} / \mathrm{sec}^{2}$, at $t=20$. Show your computations.
(c) Approximate $\int_{5}^{35} v t d t$ with a Riemann sum, using the midpoints of three subintervals of equal length.
Explain the meaning of this integral.
7. The function F is defined for all x by $F x=\int_{0}^{x} f t d t$, where f is the function graphed in the figure. The graph of f is made up of straight lines and a semicircle.
(a) For what values of x is F decreasing? Justify your answer.
(b) For what values of x does F have a local maximum? A local minimum? Justify your answer.
(c) Evaluate $F 2, F^{\prime} 2$, and $F^{\prime \prime} 2$.
(d) Write an equation of the line tangent to the graph of F
 at $x=4$.
(e) For what values of x does F have an inflection point? Justify your answer.

1. (a) $\frac{\sin x}{x}$
(b) $e^{-x^{2}}$
(c) $-\tan x$
(d) 0
(e) $\frac{1}{2 x}$
(f) $-\cos x^{2}$
(g) $\frac{x}{2 \sqrt{x} x+1}$
(h) $-\sin x \cos x \cos \cos ^{3} x$
(i) $-\sin \tan ^{4} x \sec ^{2} x$
2. (a) $0, \pi-\frac{1}{2},-\pi, \pi-\frac{1}{2}$
(b) g has a rel. max. at $x=2$ because $g^{\prime} x=f \quad x$ changes from positive to negative there.
(c) Abs. min. $=-\pi$ at $x=-2$ (Justify with Candidates' Test.)
(d) $y-\left(\pi-\frac{1}{2}\right)=-x-3$
(e) g has an I.P at $x=0$ because g^{\prime} changes from increasing to decreasing there.
g has an I.P at $x=3$ because g^{\prime} changes from decreasing to increasing there.
(f) $[-\pi, \pi]$
3. (a) $0,2,5,3$
(b) g is increasing on $(0,3)$ since g^{\prime} is positive there.
(c) Max. value $=7$ at $x=3$ (Justify with Candidates' Test.)
(d) Min. value $=0$ at $x=0$ (Justify with Candidates' Test.)
(e) $y-\frac{13}{2}=-x-4$
4. (a) g is decreasing on $\left(1,2 \frac{1}{2}\right)$ and $(4,5)$ because $g^{\prime} x=f x$ is negative there.
(b) g has a rel. max. at $x=1$ and at $x=4$ because $g^{\prime} x=f \quad x$ changes from positive to negative there.
(c) g is concave down on $\left(\frac{1}{2}, 1 \frac{3}{4}\right)$ because $g^{\prime} x=f \quad x$ is decreasing there.
(d) g has an I.P at $x=\frac{1}{2}, x=1 \frac{3}{4}$, and $x=3 \frac{1}{4}$ because g^{\prime} changes from increasing to decreasing or vice versa there.

Worksheet 2 on Functions Defined by Integrals

1. $y=2 x-2$
2. (a) $15 x^{2}$
(b) -2
3. F is decreasing on $x<-3$ because $F^{\prime} x<0$ there.
4. (a) 0
(b) H is increasing on $(0,6)$ because $H^{\prime} x=f x$ is positive there.
(c) H is concave up on $(9.5,12)$ because $H^{\prime} x=f x$ is increasing there.
(d) H 12 is positive because there is more area above the x-axis than below.
(e) H achieves its maximum value at $x=6$ because $H 0=0$ and $H 6$ and $H 12$ are positive and $H 6>H 12$.
5. (a) $0,-1,-\pi$
(b) g is decreasing on $(1,3)$ because $g^{\prime} x=f x$ is negative there.
(c) g has a relative minimum at $x=3$ because $g^{\prime} x=f \quad x \quad$ changes from negative to positive there.
(d) Abs. max. $=0$ at $x=1$ (Justify with Candidates' Test.)
(e) g is concave up on $-3,-1$ and 2,4 because $g^{\prime} x=f x$ is increasing there.
(f) g has an inflection point at $x=-1$ and $x=2$ because $g^{\prime} x=f \quad x$ changes from increasing to decreasing or vice versa there.
(g) $y+\pi=2 \quad x+1$
6. (a) $2,2,-\frac{9}{2}$
(b) 2,0
(c) 1
(d) Abs. $\max =\frac{5}{2}$ at $x=3$ (Justify with Candidates' Test.)
(e) g has an inflection point at $x=1$ because $g^{\prime} x=f x$ changes from increasing to decreasing there. g does not have an inflection point at $x=2$ because $g^{\prime} x=f x$ is decreasing for $1<x<2$ and continues to decrease on $2<x<4$.

Worksheet 3 on Functions Defined by Integrals

1. (a) g has a rel. max. at $x=2$ because $g^{\prime} x$, which is $f x$, changes from positive to negative there.
(b) g is concave down on $(1,3)$ and $(5,6)$ because $g^{\prime} x$, which is $f x$, is decreasing there.
$\begin{array}{ll}\text { (c) } y-\frac{1}{2}=-x-3 & \text { (d) graph }\end{array}$
2. $-\frac{2}{3}$
3. (a) 0
(b) 2
(c) G is decreasing on $(1,3)$ because $G^{\prime} x$, which is $f x$, is negative there.
(d) G has a rel. min. at $x=3$ because $G^{\prime} x$, which is $f x$, changes from negative to positive there.
(e) G is concave down on $-4,-3$ and $-1,2$ because $G^{\prime} x$, which is x, is decreasing there.
(f) G has an inflection point at $x=-3, x=-1$, and $x=2$ because $G^{\prime} x$, which is $f x$, changes from decreasing to increasing or vice versa there.
4. (a) $2 x \sqrt{x^{4}+8}$
(b) 6
(c) $\frac{4 x^{4}}{\sqrt{x^{4}+8}}+2 \sqrt{x^{4}+8}$
(d) $7 \frac{1}{3}$
5. F is decreasing on $x<-2$ and $x>3$ because F^{\prime} is negative there.
6. (a) $\frac{6}{7} \mathrm{ft} / \sec ^{2}$
(b) $-2 \mathrm{ft} / \sec ^{2}$ (using $(20,40)$ and $(25,30)$ to estimate the slope)
(c) $(10)(30)+(10)(40)+(10)(20)=900 \mathrm{ft}$.

This integral represents the approximate distance in feet that the car has traveled from $t=5$ seconds to $t=35$ seconds.
7. (a) F is decreasing on $-5,-3.5$ and 2,5 because $F^{\prime} x$, which is $f x$, is negative there.
(b) F has a local minimum at $x=-3.5$ because $F^{\prime} x$, which is $f x$, changes from negative to positive there. F has a local maximum at $x=2$ because $F^{\prime} x$, which is $f x$, changes from positive to negative there.
(c) $4,0,-3$
(d) $y-0=-2 \quad x-4$
(e) F has an inflection point at $x=-3, x=-2, x=1$, and $x=3$ because $F^{\prime} x$, which is $f x$, changes from increasing to decreasing or vice versa there.

