CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS

$$\frac{d}{dx}\int_1^x t^2 dt =$$

$$\frac{d}{dx}\int_{\pi/6}^x \cos t\,dt =$$

Second Fundamental Theorem of Calculus: $\frac{d}{dx} \int_{a}^{x} f t dt =$

$$\frac{d}{dx}\int_{x}^{4}t^{2}dt =$$

$$\frac{d}{dx}\int_x^a f t dt =$$

$$\frac{d}{dx}\int_{\pi/6}^{x^2}\cos t\,dt =$$

Second Fundamental Theorem of Calculus (Chain Rule Version): $\frac{d}{dx} \int_{a}^{g x} f t dt =$

Ex. Use the Second Fundamental Theorem to evaluate:

(a)
$$\frac{d}{dx} \int_{3}^{x} \sqrt{1+t^2} dt =$$

(b)
$$\frac{d}{dx} \int_2^x \tan t^3 dt =$$

(c)
$$\frac{d}{dx} \int_{-1}^{x^3} \frac{1}{1+t} dt =$$

(d)
$$\frac{d}{dx} \int_{2}^{\sin x} \sqrt[3]{1+t^2} dt =$$

Ex. The graph of a function f consists of a quarter circle and line segments. Let g be the function given by

$$g x = \int_0^x f t dt$$

(a) Find $g \ 0$, $g \ -1$, $g \ 2$, $g \ 5$.

(b) Find all values of x on the open interval -1, 5 at which g has a relative maximum. Justify your answer.

(c) Find the absolute minimum value of g on -1, 5 and the value of x at which it occurs. Justify your answer.

(d) Find the *x*-coordinate of each point of inflection of the graph of g on -1, 5. Justify your answer.

CALCULUS WORKSHEET ON SECOND FUNDAMENTAL THEOREM AND FUNCTIONS DEFINED BY INTEGRALS

1. Find the derivatives of the functions defined by the following integrals:

(a)
$$\int_0^x \frac{\sin t}{t} dt$$
 (b) $\int_0^x e^{-t^2} dt$ (c) $\int_1^{\cos x} \frac{1}{t} dt$

- (d) $\int_0^1 e^{\tan^2 t} dt$ (e) $\int_x^{x^2} \frac{1}{2t} dt, x > 0$ (f) $\int_x^2 \cos t^2 dt$
- (g) $\int_{1}^{\sqrt{x}} \frac{s^2}{s^2 + 1} ds$ (h) $\int_{-5}^{\cos x} t \cos t^3 dt$ (i) $\int_{\tan x}^{17} \sin t^4 dt$
- The graph of a function *f* consists of a semicircle and two line segments as shown. Let *g* be the function given by
 - $g x = \int_0^x f t dt.$
- (a) Find $g \ 0$, $g \ 3$, $g \ -2$, and $g \ 5$.

- (b) Find all values of *x* on the open interval −2,5 at which *g* has a relative maximum. Justify your answers.
- (c) Find the absolute minimum value of g on the closed interval [-2,5] and the value of x at which it occurs. Justify your answer.
- (d) Write an equation for the line tangent to the graph of g at x = 3.
- (e) Find the *x*-coordinate of each point of inflection of the graph of g on the open interval -2.5. Justify your answer.
- (f) Find the range of g.

- 3. Let $g x = \int_0^x f t dt$, where f is the function whose graph is shown.
- (a) Evaluate $g \ 0$, $g \ 1$, $g \ 2$, and $g \ 6$.

171	8	1		1		8
	1	A		1		0
	1		,			ů D
L.I	1	<u>; </u>	ſ		i	-
	i	1			Î	0
0	i	-	7			1:
	1	1	1	1:	V	8
	1	: :		:		1

- (b) On what intervals is *g* increasing?
- (c) Where does g have a maximum value? What is the maximum value?
- (d) Where does *g* have a minimum value? What is the minimum value?
- (e) Sketch a rough graph of g on [0, 7].
- 4. Let $g \ x = \int_{-3}^{x} f \ t \ dt$, where f is the function whose graph is shown. (a) Evaluate $g \ -3$ and $g \ 3$.
- (b) At what values of x is g increasing? Justify.
- (c) At what values of x does g have a maximum value? Justify.
- (d) At what values of x does g have a minimum value? Justify.
- (e) At what values of x does g have an inflection point? Justify.

5. Use the function f in the figure and the function g defined by

$$g(x)=\int_0^x f(t)\,dt.$$

(a) Complete the table.

r	0	1	2	3	4	5	6	7	8	9	10
g(x)										·	

- (b) Plot the points from the table in part (a).
- (c) Where does g have its minimum?
- (d) Which four consecutive points are collinear?
- (e) Between which two consecutive points does g increase at the greatest rate?

If $F(x) = \int_0^x f(t) dt$

- a. Identify all critical numbers of F(x).
- b. On what interval(s) is F(x) decreasing?
- c. On what interval(s) is F(x) concave up?

CALCULUS WORKSHEET 2 ON FUNCTIONS DEFINED BY INTEGRALS

1. Find the equation of the tangent line to the curve y = F x where $F x = \int_1^x \sqrt[3]{t^2 + 7} dt$ at the point on the curve where x = 1.

2. Suppose that $5x^3 + 40 = \int_c^x f t dt$. (a) What is f x?

(b) Find the value of c.

3. If $F = \int_{-4}^{x} t - 1^{2} t + 3 dt$, for what values of x is F decreasing? Justify your answer.

4. Let $H = \int_0^x f t dt$ where f is the continuous function with domain [0, 12] shown on the right. (a) Find H = 0.

- (b) On what interval(s) of x is H increasing? Justify your answer.
- (c) On what interval(s) of x is H concave up? Justify your answer.
- (d) Is H 12 positive or negative? Explain.
- (e) For what value of *x* does *H* achieve its maximum value? Explain.

5. The graph of a function f consists of a semicircle and two line segments as shown on the right.

Let $g x = \int_1^x f t dt$.

- (a) Find $g \ 1$, $g \ 3$, $g \ -1$.
- (b) On what interval(s) of x is g decreasing? Justify your answer.
- (c) Find all values of x on the open interval -3, 4 at which g has a relative minimum. Justify your answer.
- (d) Find the absolute maximum value of g on the interval -3, 4 and the value of x at which it occurs. Justify your answer.
- (e) On what interval(s) of x is g concave up? Justify your answer.
- (f) For what value(s) of x does the graph of g have an inflection point? Justify your answer.
- (g) Write an equation for the line tangent to the graph of g at x = -1.
- 6. The graph of the function f, consisting of three line segments, is shown on the right.
- Let $g \ x = \int_{1}^{x} f \ t \ dt$. (a) Find $g \ 2$, $g \ 4$, $g \ -2$.
- (b) Find g' 0 and g' 3.

- (d) Find the absolute maximum value of g on the interval -2, 4. Justify your answer.
- (e) The second derivative of g is not defined at x = 1 and at x = 2. Which of these values are x-coordinates of points of inflection of the graph of g? Justify your answer.

CALCULUS WORKSHEET 3 ON FUNCTIONS DEFINED BY INTEGRALS

Work the following on notebook paper.

- 1. The function g is defined on the interval [0, 6] by $g \ x = \int_0^x f \ t \ dt$ where f is the function graphed in the figure.
- (a) For what values of x, 0 < x < 6, does g have a relative maximum? Justify your answer.
- (b) For what values of x is the graph of g concave down? Justify your answer.

- (c) Write an equation for the tangent line to g at the point where x = 3.
- (d) Sketch a graph of the function g. List the coordinates of all critical point and inflection points.
- 2. Suppose that f' is a continuous function, that f = 13, and that f = 10 = 7. Find the average value of f' over the interval [1, 10].

3. The graph of a differentiable function f on the closed interval [-4, 4] is shown.

Let
$$G \ x = \int_{-4}^{x} f \ t \ dt$$
 for $-4 \le x \le 4$.

- (a) Find G 4.
- (b) Find G' 4.
- (c) On which interval or intervals is the graph of *G* decreasing? Justify your answer.
- (d) On which interval or intervals is the graph of *G* concave down? Justify your answer.

(e) For what values of x does G have an inflection point? Justify your answer.

4. The function F is defined for all x by $F = \int_0^{x^2} \sqrt{t^2 + 8} dt$. (a) Find F' x.

(b) Find F' 1.

(c) Find F'' x.

(d) Find F'' 1.

5. If $F = \int_{x}^{-5} t^2 - t - 6 dt$, on what intervals is F decreasing?

- 6. The graph of the velocity v t, in ft/sec, of a car traveling on a straight road, for $0 \le t \le 35$, is shown in the figure.
- (a) Find the average acceleration of the car, in ft/\sec^2 , over the interval $0 \le t \le 35$.

- (b) Find an approximation for the acceleration of the car, in ft/sec^2 , at t = 20. Show your computations.
- (c) Approximate $\int_{5}^{35} v t dt$ with a Riemann sum, using the midpoints of three subintervals of equal length. Explain the meaning of this integral.

7. The function F is defined for all x by $F x = \int_0^x f t dt$,

where f is the function graphed in the figure. The graph of f is made up of straight lines and a semicircle.

- (a) For what values of x is F decreasing? Justify your answer.
- (b) For what values of x does F have a local maximum? A local minimum? Justify your answer.
- (c) Evaluate $F \ 2$, $F' \ 2$, and $F'' \ 2$.
- (d) Write an equation of the line tangent to the graph of F at x = 4.
- (e) For what values of x does F have an inflection point? Justify your answer.

1. (a)
$$\frac{\sin x}{x}$$

(b) e^{-x^2}
(c) $-\tan x$
(d) 0
(e) $\frac{1}{2x}$
(f) $-\cos x^2$
(g) $\frac{x}{2\sqrt{x} x+1}$
(h) $-\sin x \cos x \cos \cos^3 x$
(i) $-\sin \tan^4 x \sec^2 x$
2. (a) 0, $\pi -\frac{1}{2}$, $-\pi$, $\pi -\frac{1}{2}$
(b) *g* has a rel max at $x = 2$

- (b) g has a rel. max. at x = 2 because g' x = f x changes from positive to negative there.
- (c) Abs. min. = $-\pi$ at x = -2 (Justify with Candidates' Test.)

(d)
$$y - \left(\pi - \frac{1}{2}\right) = -x - 3$$

(e) g has an I.P at x = 0 because g' changes from increasing to decreasing there. g has an I.P at x = 3 because g' changes from decreasing to increasing there.
(f) [-π, π]

3. (a) 0, 2, 5, 3

- (b) g is increasing on (0, 3) since g' is positive there.
- (c) Max. value = 7 at x = 3 (Justify with Candidates' Test.)
- (d) Min. value = 0 at x = 0 (Justify with Candidates' Test.)
- (e) $y \frac{13}{2} = -x 4$

4. (a) g is decreasing on $\left(1, 2\frac{1}{2}\right)$ and (4, 5) because g' x = f x is negative there.

- (b) g has a rel. max. at x = 1 and at x = 4 because g' x = f x changes from positive to negative there.
- (c) g is concave down on $\left(\frac{1}{2}, 1\frac{3}{4}\right)$ because g'(x) = f(x) is decreasing there.
- (d) g has an I.P at $x = \frac{1}{2}$, $x = 1\frac{3}{4}$, and $x = 3\frac{1}{4}$ because g' changes from increasing to decreasing or vice versa there.

Worksheet 2 on Functions Defined by Integrals

1. y = 2x - 2

- 2. (a) $15x^2$ (b) -2
- 3. *F* is decreasing on x < -3 because F' x < 0 there.
- 4. (a) 0
 - (b) *H* is increasing on (0, 6) because H' x = f x is positive there.
 - (c) *H* is concave up on (9.5, 12) because H' x = f x is increasing there.
 - (d) H 12 is positive because there is more area above the x-axis than below.
 - (e) *H* achieves its maximum value at x = 6 because
 - H = 0 and H = 6 and H = 12 are positive and H = 6 > H = 12.
- 5. (a) 0, -1, $-\pi$
 - (b) g is decreasing on (1, 3) because g' x = f x is negative there.
 - (c) g has a relative minimum at x = 3 because g' x = f x changes from negative to positive there.
 - (d) Abs. max. = 0 at x = 1 (Justify with Candidates' Test.)
 - (e) g is concave up on -3, -1 and 2, 4 because g' x = f x is increasing there.
 - (f) g has an inflection point at x = -1 and x = 2 because g' x = f x changes from increasing to decreasing or vice versa there.

(g)
$$y + \pi = 2 x + 1$$

- 6. (a) 2, 2, $-\frac{9}{2}$
 - (b) 2, 0
 - (c) 1
 - (d) Abs. max = $\frac{5}{2}$ at x = 3 (Justify with Candidates' Test.)
 - (e) g has an inflection point at x = 1 because g' x = f x changes from increasing to decreasing there. g does not have an inflection point at x = 2 because g' x = f x is decreasing for 1 < x < 2 and continues to decrease on 2 < x < 4.

Worksheet 3 on Functions Defined by Integrals

- 1. (a) g has a rel. max. at x = 2 because g'(x), which is f(x), changes from positive to negative there.
 - (b) g is concave down on (1, 3) and (5, 6) because g' x, which is f x, is decreasing there.

(c)
$$y - \frac{1}{2} = -x - 3$$
 (d) graph

(b) 2

2.
$$-\frac{2}{3}$$

3. (a) 0

- (c) G is decreasing on (1, 3) because G' x, which is f x, is negative there.
- (d) G has a rel. min. at x = 3 because G' x, which is f x, changes from negative to positive there.
- (e) G is concave down on -4, -3 and -1, 2 because G' x, which is f x, is decreasing there.
- (f) G has an inflection point at x = -3, x = -1, and x = 2 because G' x, which is f x, changes from decreasing to increasing or vice versa there.

4. (a)
$$2x\sqrt{x^4} + 8$$
 (b) 6
(c) $\frac{4x^4}{\sqrt{x^4} + 8} + 2\sqrt{x^4} + 8$ (d) $7\frac{1}{3}$

5. *F* is decreasing on x < -2 and x > 3 because *F*' is negative there.

6. (a)
$$\frac{6}{7}$$
 ft/sec²

- (b) -2 ft/sec² (using (20, 40) and (25, 30) to estimate the slope)
- (c) (10)(30) + (10)(40) + (10)(20) = 900 ft. This integral represents the approximate distance in fee

This integral represents the approximate distance in feet that the car has traveled from t = 5 seconds to t = 35 seconds.

- 7. (a) F is decreasing on -5, -3.5 and 2, 5 because F' x, which is f x, is negative there.
 - (b) *F* has a local minimum at x = -3.5 because F'(x), which is f(x), changes from negative to positive there. *F* has a local maximum at x = 2 because F'(x), which is f(x), changes from positive to negative there.

(c) 4, 0,
$$-3$$

- (d) y 0 = -2 x 4
- (e) *F* has an inflection point at x = -3, x = -2, x = 1, and x = 3 because F'(x), which is f(x), changes from increasing to decreasing or vice versa there.